Coupled Mechanisms of Precipitation and Atomization in Burning Nanofluid Fuel Droplets
نویسندگان
چکیده
Understanding the combustion characteristics of fuel droplets laden with energetic nanoparticles (NP) is pivotal for lowering ignition delay, reducing pollutant emissions and increasing the combustion efficiency in next generation combustors. In this study, first we elucidate the feedback coupling between two key interacting mechanisms, namely, secondary atomization and particle agglomeration; that govern the effective mass fraction of NPs within the droplet. Second, we show how the initial NP concentration modulates their relative dominance leading to a master-slave configuration. Secondary atomization of novel nanofuels is a crucial process since it enables an effective transport of dispersed NPs to the flame (a pre-requisite condition for NPs to burn). Contrarily, NP agglomeration at the droplet surface leads to shell formation thereby retaining NPs inside the droplet. In particular, we show that at dense concentrations shell formation (master process) dominates over secondary atomization (slave) while at dilute particle loading it is the high frequency bubble ejections (master) that disrupt shell formation (slave) through its rupture and continuous outflux of NPs. This results in distinct combustion residues at dilute and dense concentrations, thereby providing a method of manufacturing flame synthesized microstructures with distinct morphologies.
منابع مشابه
Numerical Simulation of Flash Boiling Effect in a 3-Dimensional Chamber Using CFD Techniques
Flash Boiling atomization is one of the most effective means of generating a fine and narrow-dispersed spray. Unless its complexity its potential has not been fully realized. In This Paper, a three dimensional chamber has been modeled with a straight fuel injector. Effect of Flash Boiling has been investigated by computational fluid dynamics (CFD) techniques. A finite volume approach with the ...
متن کاملSpray Combustion at Normal and Reduced Gravity in Counterflow and Co-flow Configurations
Liquid fuel dispersion in practical systems is typically achieved by spraying the fuel into a polydisperse distribution of droplets evaporating and burning in a turbulent gaseous environment In view of the nearly insurmountable difficulties of this two-phase flow, a systematic study of spray evaporation and burning in configurations of gradually increasing levels of complexity, starting from la...
متن کاملMODELING OF RAPID SOLIDIFICATION PROCESS IN THE GAS ATOMIZATION OF MOLTEN METALS
In the present work, a model was proposed to predict the thermal history during rapid solidification (RS) of metal droplets in the gas atomization process. The classical theory of heterogeneous nucleation was based on Newtonian heat flow and enthalpy method. Solving the governing numerical equations by the finite difference method (FDM) gave up the opportunity of analyzing the temperature-time ...
متن کاملModeling of liquid ceramic precursor droplets in a high velocity oxy-fuel flame jet
Production of coatings by high velocity oxy-fuel (HVOF) flame jet processing of liquid precursor droplets can be an attractive alternative method to plasma processing. This article concerns modeling of the thermophysical processes in liquid ceramic precursor droplets injected into an HVOF flame jet. The model consists of several sub-models that include aerodynamic droplet break-up, heat and mas...
متن کاملOn LEM/LES Methodology for Two-Phase Flows
A two-phase subgrid combustion model developed earlier has been evaluated for applicability in largeeddy simulations (LES). Direct Numerical Simulations (DNS) of two-phase isotropic turbulence in the presence of passive, momentum-coupled and vaporizing droplets has been extensively studied to form a base-line database. Current DNS results agree with earlier studies and show that the presence of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015